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Outline of the tutorial

• Potential Energy
• Enter Quantum Mechanics (1926)
• Hydrogen atom, many electron atoms
• Molecular system, Born-Oppenheimer approximation
• Representing potential energy curves and surfaces
• Dynamics: Classical and Quantum Mechanical
• Trajectories and wave packets
• Observing the transition state
• Non-crossing rule (Jahn-Teller effect)
• Conical intersections
• Non-adiabatic coupling and the nuances



Recipe for chemical dynamics

• Solve the time-independent Schrödinger equation for electronic motion for a 
given set of nuclear coordinates 
• By including the internuclear repulsion, construct the potential energy surface
• Solve the time-(in)dependent Schrödinger equation for nuclear motion
• Obtain the bound (v,j) states for nuclear motion
• Or solve the scattering problem
• When the electronic states are close to each other, go beyond Born-Oppenheimer 

approximation
• Determine non-adiabatic coupling terms
• Solve the multi-electronic state problem 
• Essential for femtosecond and attosecond chemistry
• Remember uncertainty principle for time and energy! 



Potential Energy, relative by definition

• V = mgh, 
• g = G𝑀⨁/𝑟⨁" , 
• V = -Gm1m2/r.

• V = (1/2) k x2, for a mass m held 
by a spring to an infinite mass

• Coulomb’s Law:
• V = q1q2/r

• Earliest indication of 
intermolecular interaction in van 
der Waals equation (1873):

• 𝑃 + #!$
%!

𝑉 − 𝑛𝑏 = 𝑛𝑅𝑇



Lennard-Jones potential (1924): 
𝑉!" = 4𝜖[( ⁄# $)%&−( ⁄# $)' ]

Plot in reduced variables



Enter Quantum Mechanics (1926)

• The wave function (Ψ) contains all the information about the system
• It evolves with time

• − &ℏ() *
(*

= ℋΨ(𝑡), ℋ is the Hamiltonian operator

• First order differential equation in time t
• Ψ 𝑡 = 𝑈(𝑡, 𝑡+) Ψ(𝑡+)
• 𝑈 𝑡, 𝑡+ = 𝑒,&ℋ*/ℏ, evolution operator
• 𝑈𝑈/ = 1;𝑈 is unitary



Time-independent approach

• HΨ = E Ψ
• 𝐻𝜓# = 𝐸#𝜓#
• H = T + V
• T = p2/(2m)
• V = V(x)
• [T, V] ≠ 0

• For hydrogen atom, 

• 𝐻01 = − ℏ!

"2
∇" 𝐾𝐸 − 0!

3
(𝑃𝐸),

• 𝑚 = 2"2#
2"42#

≈ 𝑚0 ,

• 𝐻𝜓#(𝑟, 𝜃, 𝜙) = 𝐸#𝜓#(𝑟, 𝜃, 𝜙), 

• 𝐸# = − 5
"
Hartree

= − 56.8
#!

eV.



The hydrogen atom potential

V

𝑟/𝑎!

1/r

0

-13.6 eV

The Coulombic potential 
V goes to −∞ as 𝑟 → 0.
Quantum mechanics puts 
a lower bound: -13.6 eV
Ionization potential: 13.6 eV
Bound states: n = 1,2,3, …



For a many electron atom

• 𝐻01 = − ℏ!

"2
∑&95# ∇&" − ∑&95# :0!

3$
+ ∑;<&# ∑&95# 0!

3$%
,

= K.E. + P.E.
• P.E. = Potential energy for electronic motion
• No analytic solution



For a molecular system

• Ψ = Ψ (R, r), r electron coordinates and R nuclear coordinates
• Ψ = 𝜒(𝑅)Ψ (r; R).
• Born-Oppenheimer approximation: electronic motion and nuclear 

motion are separable
• Forms the basis for defining the potential energy for nuclear motion
• For a diatomic molecule AB,

• 𝐻 = − ℏ!

"=
∇>" −

ℏ!

"=
∇?" +𝐻@A +

:&:'0!

B&'
. 

• Kinetic energy + potential energy for the nuclear motion 



H!": 𝑉#$ = 𝐸%& + (
'
(
)

Conservation of orbital 
Symmetry implied here!



For a diatomic 
system,
𝐻!"𝜒# 𝑅 =
[− ℏC

%&
∇'% +

𝑉 𝑅 ] 𝜒 𝑅 = 
𝐸#𝜒#(')

Bound states: quantum mechanical signature

Bound states of H"#



Potential energy curves represented by 

• 𝑉 = 𝐷@ 1 − 𝑒,D B,B# "
, Morse function

• 𝑉 𝑅 = ∑𝜆&𝑥& , 𝑥 = 𝑅 − 𝑅0
• 𝑉 𝑥 = (E

"
)𝑥", Harmonic oscillator

• 𝐸# = 𝑛 + 5
"

ℎ𝜈,

• Chemical bonds are represented by a ”−” but are DYNAMIC!
• Minimum energy = ZPE  ≠ 0



Potential 
energy surface 
for HeH!"



Dynamics of a chemical reaction 

• H + p-H2 (↑↓) (j = 0) -> o-H2 (↑↑) (j = 1) + H 
• Please note that the nuclear (not electron) spins are shown
• Farkas (1930), Ea = 0.24 eV, cf. 𝐷@(H2) = 4.74 eV
• Puzzle: The exchange reaction has to take place for the o-/p-

conversion because the transformation without breaking the bond is 
symmetry forbidden. Yet, the activation energy is far less than the 
bond dissociation energy.
• Need to look into the dynamics
• First requirement: potential energy surface



Schematic 
diagram of a PES 
for an A + BC -> 
AB + C exchange 
reaction



Contour 
diagram for a 
typical 
thermoneutral 
reaction



Referred to as a saddle



Saddle of a horse and the mountain in 
Scotland with the same name

Source: wikipedia



Saddle in Siachen Glaciers

Maximum in one direction, minimum in the mutually orthogonal direction 

↓



PES for H + H2 -> H2 + H  

• London equation (1928):

• V = ∑&956 𝑄& ± (𝐽5 − 𝐽")"+(𝐽" − 𝐽6)"+ (𝐽6 − 𝐽5)"

• Based on Heitler-London equation (1927) for  V(R) = F ± H
5±I

• London-Eyring-Polanyi equation (1931), setting Q/E = 0.14 



London-
Eyring-
Polanyi PES 

Eyring lake, in the old literature





Ab initio PES  
(Siegbahn 
and Liu at 
IBM (1973)) x

X: saddle point



Dynamics

Trajectory 
No trajectory; 
But the evolution 
Can be followed in 
Phase space, subject 
To the uncertainty principle

∆𝑥∆𝑝$ = ℏ



PES in scaled 
and skewed 
coordinates: 
three particle 
motion 
converted into 
the motion of 
a fictitious 
single particle

They could not do the trajectory calculations at that time.



PES for an 
exothermic 
reaction: early 
barrier
(transition state 
resembles the 
reactants) 



(son) Polanyi rules: 
+I: early barrier, 
translation helps
+II: late barrier, 
vibration helps



Illustration of 
trajectories 
for the He + 
H!"collisions; 
from our lab



Use of wave 
packets in 
quantum 
mechanics



Wave packet dynamics

He, H2
+

HeH+ + H

│Ψ│2

Collinear reaction He + H2
+ (v=0,j=0) ® HeH+ + H

Studied quantum mechanically using the wave packet method



He + H2
+ (v=0,j=0) ® HeH+ + HH

He

H

q
r

R

Wave packet dynamics in three dimensions



(Indirect) evidence for the 
Transition State
• If the location of the barrier influences 

Specific Energy Disposal (SED) and 
Selective Energy Consumption(SEC), 
then the observation of SED and SEC would reveal the nature of the 

Transition State!
• Can we “OBSERVE” the Transition State directly?
• Yes, we could, if we  coud record the spectrum of the transition state



“Observing” the transition state

• The story of the wings: F + Na2 → FNa + Na
• Observing bond breaking/forming at the molecular level requires 

time resolution of the order of a few femtoseconds
(1fs = 10-15s)

• Zewail did it! (NL 1999)
• Photodissociation in several fs
• Observing molecules vibrating and rotating in real time and seeing 

the evidence of tunneling at the molecular level.









Computer modelling of 
Elementary chemical reactions

Intermediate ~ 2-3 ps

Change from reactants to products 
In a few fs







What happens when two electronic states 
come clos together (become degenerate)? 
Non-crossing rule

• If |𝜓> > is a solution of the Schrödinger equation for a system and
if |𝜓? > is also a solution with the same energy, 
then the linear combination |𝜓> > ± |𝜓? > is also a solution
• The two states of the same symmetry would avoid each other: 

Jahn-Teller effect



Illustration of 
an avoided 
crossing in 
one 
dimension
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will often be normal mode displacements from some

reference conformation, but there are other useful
ways to choose them. We use only these molecule-
fixed coordinates, omitting angular momentum ef-
fects. Since spin-orbit interaction is neglected, the
electronic Hamiltonian operator ti(q, Q) may be
taken as real. It operates on the electronic coordi-
nates only; the Q’s are merely parameters.

This operator is tractable only when it is repre-
sented as a matrix in terms of a complete orthonor-
mal set of electronic wave functions,  { , Q), which
may depend parametrically on the set of nuclear dis-
placements Q. The matrix elements are

Hij(Q) = S ^*H jdq (1)

The diagonal element Hu(Q) is the expectation value
of the energy of a system represented by the wave
function   . This function, Hu(Q) = Ei{Q), is by
definition the potential energy function for the t'th
electronic state. This magnificently general but
somewhat formal definition produces a pair of poten-
tial functions corresponding to any chosen pair of
electronic states, the basis states under consider-
ation. There are several physically meaningful ways
to choose these pairs of basis states. The adiabatic
states   ,  2, which diagonalize H, are a possible
choice. The resulting adiabatic potential functions
are often considered to be the potential functions of
the molecule. In many cases, however, these adiabat-
ic states are not the most useful or natural,18"22 since
they sometimes undergo an abrupt change of charac-
ter in the neighborhood of an intersection, as we
shall see. In such a case, it is much more natural to
work with states having a definite electronic configu-
ration or orbital occupancy, which does not change
as the molecule is distorted in the neighborhood of
some conformation of interest. Anticipating a bit, we
refer to these as crossing states,   ,  2.

It is important to establish the relationship be-
tween these crossing states and the adiabatic states,
and between the corresponding potential functions.
These pairs of states must be related by a transfor-
mation which takes one complete orthonormal set
into another (eq 2). Here the transformation matrix

'Pi — (cos  )  — (sin  ) 2
 2 = (sin  )  + (cos  ) 2 ^ ^

which mixes the states  has geometric significance
as a rotation through the angle  of an arbitrary
point in plane polar coordinates. The mixing is com-
pletely determined by the single parameter  , the
mixing angle. In order to relate the potential surfaces
for the states  to those for the adiabatic states  ,
we need the relationship between the Hamiltonian
matrix in the  basis, H«, and the corresponding
matrix    in the  basis

  =  +   (3)
where U is the transpose of the matrix which trans-
forms  —*  in eq 2. Starting with the  states and

(17) The term conformation is used in order to reserve the term configu-
ration for an assignment of electrons to orbitals, e.g.,... (  )4 8.

(18) F. T. Smith, Phys. Rev., 179, 111 (1969).
(19) T. F. O’Malley, Advan. At. Mol. Phys., 6, 223 (1971).
(20) J. B. Delos and W. R. Thorson, Phys. Rev. A, 6, 728 (1972).
(21) E. E. Nikitin in “Chemische Elementarprozesse,” H. Hartmann,

Ed., Springer-Verlag, West Berlin and Heidelberg, 1968.
(22) T. F. George and John Ross, J. Chem. Phys., 55,3851 (1971).
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Figure 1. Two adiabatic potential curves with an avoided inter-
section. The adiabatic states are the indicated linear combina-
tions of the crossing states   ,  2 each of which has a definite or-

bital occupancy. The dotted line represents the mixing angle, eq 2
and 4.

using the fact that   is diagonal, the mixing angle  
is determined by

tan 2 — (4)

and separation of the adiabatic energies is

E2 ~ E, = [(H22 - Hu)2 + 4\Hi2\2f2 (5)
These equations involve matrix elements in the  
basis, as defined in eq 1. Consider for a minute the
application of these equations to the crossing of dia-
tomic potential curves. Suppose we have, at some
particular internuclear separation Q0, 0 < H12 <
   = H22, and   2 is a slowly varying function of
Q. Then as Q passes through the value Q0, the de-
nominator in (4) goes through zero and of course
changes sign. The mixing angle  switches from near-
ly Oto nearly  /2, with 6 = tt/4 at Q0 (see Figure 1).

Intersections of Potential Energy Hypersurfaces
In the previous section we have talked about po-

tential energy functions, avoiding geometrical lan-
guage. Geometry needs a space, and several spaces
are useful. There is the four-space ESQ in which the
coordinates are potential energy and the three Q’s.
Then there is the three-dimensional conformation
space 3Q. In addition there are three spaces EQiQ¡
which appear as sections of the ESQ space with Qn
held constant.

It is often most convenient to define curves and
surfaces parametrically. With this in mind, define a
curve as a one-parameter locus, i.e., a correspon-
dence between values of a single parameter and
points in a space. A surface is a two-parameter locus
or a family of curves. A hypersurface is a three-pa-
rameter locus or a family of surfaces. In ESQ, one
relation among the four variables determines a hy-
persurface, two independent constraints determine a

surface, and three determine a curve.
The word intersection will be used, for the pres-

ent,23 to refer to the situation in which two adiabatic
potential hypersurfaces in ESQ have one or more

points in common, and we consider properties of the
two surfaces at and near these points. By intersec-
tion locus is meant the set of all points in 3Q for
which the two potential functions have the same

(23) The distinction between intersections and contact will be intro-
duced later.



Potential energy curves of the same symmetry do 
not cross each other in one dimension!

⃒𝑉 − 𝐸⃒ = 
𝑉!! − 𝐸 𝑉!"
𝑉"! 𝑉"" − 𝐸

= 0

(V11-E)(V22-E) – V12
2 = 0, (V12 = V21)

E2 – (V11 + V22)E + (V11 V22 - V12
2 ) = 0

E = (V11 + V22)/2 
±√{(V11 - V22)2 + 4 V12

2 }/2
If V11 = V22 (degenerate), 
E± = (V11 + V22)/2  ± V12

Degeneracy is lifted by the coupling term

V12 = <Ψ1⃒V⃒Ψ2>	=	0,	if	<Ψ1⃒Ψ2>	=	0
(states	of	different	symmetry	can	cross!)
V12 ≠ 0,	if	<Ψ1⃒Ψ2>	≠ 0
States	of	the	same	symmetry	do	not	cross.



Na(↑) +I(↓) → NaI(↑↓) covalent, diabatic

Na! + I" → Na!I" ionic, diabatic

Both are of same symmetry and multiplicity ( <
Σ)

The two curves do not cross; they avoid each other



Zewail’s classic experiment: 
Photo-excitation of NaI

NaI in the ground electronic state
goes asymptotically to the ionic state as 𝑅 → ∞
And the upper electronic state 
goes asymptotically to the covalent state as 𝑅 → ∞
Both states have the same symmetry: !Σ
They avoid each other at the crossing point

The lowest energy curve over the entire R range 
Is called an adiabatic curve (---)
Similarly, the next higher energy curve is also an 
adiabat (---)
Adiabat: slow changing

The solid line is called a diabat

Landau-Zener transition probability

𝑃 = exp−( #$!%"!!

&'|)"*)!|
)



4D Microscopy



Non-adiabatic coupling between electronic 
states

• 𝜏;E 𝑅 =
𝜁;(𝑟|𝑅) 𝛻 W𝐻0 𝜁E(𝑟|𝑅)

K( ,K%

• When states |k> and |j> become degenerate, there is a singularity. 
• The result: conical intersection in more than one dimension!
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Conical intersection in two dimensions
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Figure 2. A conical intersection of Ai and B2 states in C2u. The
mixing of the basis states on the two sheets of the cone is indicat-
ed by the mixing angle 0. The Hamiltonian matrix is indicated
schematically, showing only the first-order dependence on normal
mode displacements. The cone is not in general circular. See eq
11.

0, -Qf
o

o
0, Of

Figure 3. A glancing intersection of the components of a 11 state.
There is no mixing of the basis states. Q dependence of the Ham-
iltonian matrix is indicated.

K + Br2 —* KBr + Br (12)

Br2 to K+ + Br2~ as the reactants approach.31 In
C2v, the 2Ai surface correlating with neutral reac-
tants crosses the strongly attractive 2B2 surface cor-

relating with K+ + Br2~. In the unlikely event that
K approaches Br2 along the perpendicular bisector,
there can be no electron jump, since there is no in-
teraction of the two surfaces in C2v. However, in Cs
conformations in the neighborhood of the intersec-
tion, the interaction will be strong, and there will be
an abrupt change in character of the adiabatic sur-

face, covalent to ionic, as the reactants approach.
This electron jump will be less sudden for trajec-
tories which do not come so close to the intersection,
and the attraction between the reactants caused by
mixing in of ionic character will extend to longer
range.

The discussion just given, based on state correla-
tions, has a more primitive but qualitatively similar
version based on orbital correlations. The electron
jumps from a   orbital on K to a   orbital on Br2,
forbidden in the broadside approach.32 Arguments
based on orbital correlations are much used, and, it
must be observed, useful33 much of the time.34

(B) Another common type of intersection involves
the components of a  state of a linear (CmÍ,) mole-
cule. When the molecule is bent, the degenerate  
state splits into two states, A' and A", symmetric
and antisymmetric with respect to the plane of the
molecule, as indicated in Figure 3. The splitting is
proportional to the square of the bending coordinate,
but there is no mixing of the states due to a static
displacement, since they are always of different sym-
metry. The ground state of N02, 2Ai, and the first
excited state, 2Bi, are components of the 2nu, state
which correlates with ground states of 0 + NO.35
Although Ai and Bi are not mixed by simply bend-
ing the molecule, they can be mixed by rotation or

(31) J. L. Kinsey, MTP (Med. Tech. Publ. Co.) Int. Rev. Sci., Phys.
Chem., Ser. One, 173 (1972).

(32) G. M. Kendall and R. Grice, Mol. Phys., 24,1373 (1972).
(33) B. H. Mahan and J. S. Winn, J. Chem. Phys., 57, 4321 (1972).
(34) Not always useful however. For H2, the state 1< 61  1  ,+ has a dis-

sociation energy of 80 kcal/mol, greater than that of Ha+, and dissociates
adiabatically to H(12S) + H(22P).

(35) R. A. Gangi and L. Burnelle, J. Chem. Phys., 55,851 (1971).

spin-orbit coupling. This may occur in the radiative
recombination,36 O + NO —* N02*.

(C) For a linear molecule with a center of symme-
try (D^h), a quite different type of intersection can

occur, between a Sg+ and a Su+ state. Though this
intersection is not very common, it provides a partic-
ularly striking illustration of the fact that an inter-
section may have three very different forms in its
three different sections. The Hamiltonian matrix
takes the form

 = [~Qi Qi
lQs

q3
Qi + Q22

(13)

Here for simplicity we have omitted the coefficients
of the Q’s, retaining only the qualitative features of
the lowest order Q dependence. In the Q2 = 0 section
(FQ1Q3 space) we have a double cone with variable
mixing, as in Figure 2. In the Q3 = 0 section (EQ1Q2
space) there is no mixing, and the surfaces are inter-
secting parabolic cylinders. In the Qi = 0 section,
the surfaces meet at a point. They separate linearly
in the Q3 direction with mixing, but quadraticallv in
the Q2 direction without mixing, as indicated sche-
matically in Figure 4.

(D) Even in Cs conformations, intersections and
near-intersections are of interest. If the two states
have different symmetry with respect to the plane
(Ar and A" states), they will not interact as a result
of any static deformation, since H12 will be zero ev-

erywhere. Any section of the intersection will be, to
first order in the displacements, two intersecting
planes, with no mixing. The states may be mixed by
spin-orbit coupling or rotation, however, and this
mixing will be significant only in the neighborhood
of the intersection. Thus the intersection of A' and
A" states in Cs, while uninteresting from the point
of view of static displacements, can be quite impor-
tant in real collisions.

If the two states have the same symmetry with re-

spect to the plane, Hi2 will not be zero in any finite
bent conformation. The two hypersurfaces may ap-
proach more or less closely, but will not actually in-

(36) F. Kaufman, in “Chemiluminescence and Bioluminescence,” J. Lee,
D. M. Hercules, and M. Cormier, Plenum Press, New York, N. Y., 1973, p
83.



Adiabatic state correlation diagram for HeH2
+ reproduced from 

D. G. Hopper, J. Chem. Phys. 73, 3289 (1980)

CI
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Potential energy surfaces for the lowest three 
electronic states of linear HeHH+







Thank you


