Radiationless Transition

Radiative and Radiationless Transitions

Radiationless Transitions Between States

Why radiationless transitions matter? Competition with fluorescence and phosphorescence

$$\phi_f = \frac{k_f[S_1]}{(k_f + k_{isc} + k_{ic} + ...)[S_1]}$$

$$\tau_f = \frac{1}{k_f + k_{isc} + k_{ic} + \dots}$$

Visualization of vibrational levels within an electronic energy surface

Harmonic

Anharmonic

Visualization of vibrational levels within a ground state and excited state electronic energy surfaces

Note: the location of minimum on the upper surface

Matching surfaces

Crossing surfaces

Conversion of electronic to vibrational energy

Three step process: (a) upper vibrational to lower vibrational level in excited state (b) lower vibrational level to upper vibrational of the lower state (c) upper vibrational of the lower state to lowest vibrational level

Non-radiative deactivation processes

Internal conversion (IC) implies the transformation of electronic excitation into vibrational energy. This process takes place through <u>nuclear tunneling</u> from the excited state potential surface to that of the ground state. Strong overlap of vibrational wave functions is necessary.

Since back-tunneling can also readily occur, fast vibrational relaxation (VR) is an important condition for this deactivation pathway.

Electronic to Vibrational Energy Transfer

Intramolecular vibrational relaxation (IVR) occurs within 10 to 0.1 ps

Intermolecular vibrational energy transfer (VET) from the molecule to the solvent occurs in the time range 100 to 10 ps

Radiationless processes include (a) orbital symmetry and (b) spin selection rules

Non-radiative deactivation processes

Intersystem crossing (ISC) is a special case of internal conversion, which takes place between an electronic excited state and another excited state characterized by a different spin multiplicity ($S_1 \rightarrow T_1$, for instance). This process involves a simultaneous spin flip.

Vibrational relaxation is also necessary to avoid crossing back to the initial system.

Radiationless Process and Surface Crossing and Matching

The Energy Gap Law for Internal Conversion

 $f \sim \exp{-\Delta E}$

 $k_{\rm IC} \sim 10^{13} f_{\rm v}$

 $k_{IC} \sim 10^{13} exp - \alpha \Delta E$

 ΔE is the energy separation between the surfaces involved in the transition at the nuclear geometry r_c .

Dependence of rate of $k_{IC} S_1$ to S_0 on energy gap

Dependence of rate of k_{ISC} T₁ to S₀ on energy gap

"igure 5.5. Relationship between the energy gap $\Delta E(T_1 - S_0)$ and the logarithm of he rate constant k_{TS} of intersystem crossing in aromatic hydrocarbons (data from lirks, 1970).

Azulene Anamoly and Energy Gap Law

Fluorescence occurs only from S_1 to S_0 ; phosphorescence occurs only from T_1 to S_0 ; S_n and T_n emissions are extremely rare (Kasha's rule).

	Φ_{fl}	E _{S1} , kcal/mol	E _{S₂} , kcal/mol	ΔE , kcal/mol
C	0.058	36.3	77.0	40.9
	0.031	40.9	80.9	40.0
¢5	0.014	39.5	77.8	38.3
\bigcirc	0.0081	42.6	79.5	36.9
	0.0034	42.9	77.5	34.6
\bigcirc	~10 ⁻⁴	44.3	77.2	32.9
℃O₂Me	Î			1

TABLE I. Fluorescence Quantum Yields and the Energies of the First Two Excited Singlet States of Substituted Azulenes⁴

S_2 to S_1 rate vs Energy Gap

Figure 3. Log-linear energy gap law plots (see text) for azulene (AZ), 1-fluoroazulene (FAZ), and 1,3-difluoroazulene (DFAZ) in several solvents (line A), and for 6-isopropylazulene (IAZ), 1-fluoro-6isopropylazulene (FIAZ), and 1,3-difluoro-6-isopropylazulene in *n*hexane (line B). The data for AZ in several solvents are taken from ref 11.

Effect of deuteration on radiationless process (T_1 to S_0)

Figure 5.2 $T_1 - S_0$ intersystem crossing rate k_{GT} (s⁻¹) and Franck-Condon factor F against normalized triplet state energy $(E_T - E_0)/\eta$ for unsubstituted perprotonated and perdeuterated aromatic hydrocarbons. The broken line represents F as derived from phosphorescence spectra. The F-scale is normalized by drawing the two solid lines as tangents to this function (after Siebrand⁸)

Birks book

Electronic to Vibrational Energy Transfer

Bond Type	Vibrational Type	Frequency
C=C	stretch	2200 cm ⁻¹
C=O	stretch	1700 cm ⁻¹
C=C	stretch	1600 cm ⁻¹
N=N	stretch	1500 cm ⁻¹
C-H	bend	1000 cm^{-1}
C-C	stretch	1000 cm^{-1}
C-C	bend	500 cm^{-1}
С-Н	stretch	3000 cm ⁻¹
C-D	stretch	2100 cm ⁻¹

 Table 5.4
 Some Representative Values of Triplet Energies, Phosphorescence Radiative Rates, Intersystem Crossing Rates, and Phosphorescence Yields^a

 Isotope Effect on

Molecule	E_{T}	k_{P}	$k_{\rm TS}$	$\Phi_{\rm P}$
Benzene- h_6	85	~ 0.03	0.03	0.20
Benzene- d_6	85	~ 0.03	< 0.001	~ 0.80
Naphthalene- h_8	60	~ 0.03	0.4	0.05
Naphthalene- d_8	60	~ 0.03	< 0.01	~ 0.80
(CH ₃) ₂ C=O	78	~ 50	1.8×10^{3}	0.043
$(CD_3)_2C=O$	78	~ 50	0.6×10^3	0.10

a. In organic solvents at 77 K. $E_{\rm T}$ in kcal mol⁻¹, k, in s⁻¹.

 C-H stretch
 3000 cm⁻¹

 C-D stretch
 2100 cm⁻¹

Rate of T₁ to S₀

Vibrational effects on singlet oxygen lifetime

Table 14.3 Approximate Rate Constants^a for the Deactivation of ¹∆ by Various Kinds of X—Y Bonds in Organic Solvents^b

	Bond Type	$k_{\rm d}({\rm M}^{-1}{\rm s}^{-1})$	Vibrational Energy (cm ⁻¹)		
\rightarrow	О—Н	2900	~ 3600		
\rightarrow	C-H (aromatic)	1500	~ 3000		
\rightarrow	C-H (aliphatic)	300	~ 2900		
\rightarrow	O-D	100	~ 2600		
\rightarrow	C-D (aromatic)	20	~ 2200		
\rightarrow	C-D (aliphatic)	10	~ 2100		
	C-F (aromatic)	0.6	~ 1200		
	C-F (aliphatic)	0.05	~ 1200		

a. Reference 9.

b. The energies of X-D vibrations are typically at 0.73 times the energy of a X-H vibration.

Crossing from one to another surface depends on the allowedness of the transition: (a) electronic and (b) spin

Role of Spin-Orbit Coupling on ISC

The Effect of Spin-Orbit Coupling on ISC

The Effect of Spin-Orbit Coupling on ISC

El-Sayed's Rule

Intersystem crossing is likely to be very slow unless it involves a change of orbital configuration.

$S_1(n,\pi^*) \rightarrow T_1(n,\pi^*)$	Forbidden
$S_1(n,\pi^*) \rightarrow T_1(\pi,\pi^*)$	Allowed
$\mathrm{S}_1(\pi,\pi^*) \to \mathrm{T}_1(n,\pi^*)$	Allowed
$S_1(\pi,\pi^*) \to T_1(\pi,\pi^*)$	Forbidden

$$\begin{array}{ll} T_1 \rightarrow S_0 & T_1(n,\pi^*) \rightarrow S_0(n^2) & \mbox{Allowed} \\ Transitions & & \\ & T_1(\pi,\pi^*) \rightarrow S_0(\pi^2) & \mbox{Forbidden} \end{array}$$

Spin-Orbit Coupling and Heavy Atom Effect

Field at a molecular level is generated from the *orbital motion* of the electron around the nucleus.

$$\hat{H}_{SO} = \zeta l \cdot s$$
$$\zeta_{n,l} \propto \frac{Z^4}{n^3 l(l+1/2)(l+1)}$$

The Spin-Orbit coupling constant depends on the fourth power of the atomic number and its effect is very large for heavy atoms.

Influence of Heavy Atom Effect on ISC

Molecule	$k_{\rm F}^0$	k _{ST}	$k_{\rm P}^0$	k _{TS}	$\Phi_{\rm F}$	$\Phi_{\rm P}$
Naphthalene	106	10 ⁶	10^{-1}	10^{-1}	0.55	0.05
1-Fluoronaphthalene	10 ⁶	10 ⁶	10^{-1}	10^{-1}	0.84	0.06
1-Chloronaphthalene	10 ⁶	10 ⁸	10	10	0.06	0.54
1-Bromonaphthalene	10 ⁶	10 ⁹	50	50	0.002	0.55
1-Iodonaphthalene	106	10 ¹⁰	500	100	0.000	0.70

 $k_{\rm TS} = 40 \times 10^{-1} \, {\rm s}^{-1}$

 $k_{\rm TS} = 600 \times 10^{-1} \, {\rm s}^{-1}$

 $k_{\rm TS} = 2 \times 10^{-1} \, {\rm s}^{-1}$

