Molecular and Supramolecular Photochemistry

Modern Molecular Photochemistry of Organic Molecules Or Principles of Photochemistry

N. J. Turro, V. Ramamurthy and J. C. Scaiano

Chapters 1 & 2

Photochemistry

Interaction of Light with Matter (Molecules)

Organic Photochemistry

• Inorganic Photochemistry

• Photobiology

What is the difference between thermochemistry and photochemistry?

- Mode of activation
 - Activated by collisions (thermo)
 - Activated by light (photo)
- Selectivity in activation
 - Entire molecule gets activated
 - Only the chromophore that absorbs the light gets activated
- Energy distribution
 - Energy used for vibrational/rotational transition
 - Energy used for electronic transition only

Visualization of Thermal Reactions

- Transition state connects a single reactant to a single product (intermediate) and it is a saddle point along the reaction course.
- Collisions are a reservoir of continuous energy (~ 0.6 kcal/mol per impact).
- Collisions can add or remove energy from a system.
- Concerned with a single surface.

Visualization of Photochemical Reactions

We need to deal with two surfaces (ground and excited state.

Photochemistry starts with interaction of a <u>Photon</u> with a <u>Molecule</u>

- What is a photon?
- What is a molecule?
- How do they interact?
- What are the consequences of interaction?

The Basic Laws of Photochemistry

Grotthuss-Draper law

The First Law of Photochemistry: light must be absorbed for photochemistry to occur.

Theodor v. Grotthufs

Grotthus

John William Draper (1811-1882)

Stark

Einstein

Stark-Einstein law

The Second Law of Photochemistry: for <u>each photon</u> of light absorbed by a chemical system, <u>only one molecule</u> is activated for a photochemical reaction.

The Light Paradigm (500 BC-1850 AD)

...but then came the 1900's - new people, tools, and paradigms!

James Clerk Maxwell 1831-1879

Paradigm 1800s: Light consists of waves (energy propagated by waves): Energy is spread over space like a liquid.

Maxwell's theory is called the *classical* theory of light.

Key equations: $c = \lambda v$; [λ (Gk lambda), v(Gk nu)] c = speed of light wave wave propagation $\lambda =$ wavelength, v = frequency

Classical: Energy carried by a light wave is proportional to the *amplitude* of the wave.

The Light Paradigm (1850 AD-1930 AD)

What is a photon?

Photon (Light) has dual characteristics: a particle and a wave

Wayalangth			Wave		
Wavelength	λ	¢	← Wavelength →		
Wavenumber:	υ	1/λ			
Frequency:	ν	c/λ			
Energy	hν	hc/λ	Distance>		
Einstein:	Nhν	Mole of phot number of pl	ons (one Avagadro notons)		
Velocity:	186,281 r	niles/sec; 2.9	979 x 10 ¹⁰ cm/sec		
Momentum:	E/c				
Mass:	Momentum/c (no real mass)				
Charge:	0 (no charge)				
Spin	1 <i>ħ</i>				

The Range of Electromagnetic Radiation (Light)

X-RAY	ULTRAVIOLET				INFRARED	MICRO- WAVE	RADIO		waves
-------	-------------	--	--	--	----------	----------------	-------	--	-------

REGION

ENERGY TRANSITIONS

X-ray	Ionization
UV/Visible	Electronic
Infrared	Vibrational
Microwave	Rotational
Radio Frequency	Nuclear and
(NMR)	Electronic Spin

Light and Energy Scales

E (kcal mol⁻¹) = $[2.86 \text{ x } 10^4 \text{ kcal mol}^{-1} \text{ nm}]/\lambda \text{ nm}$

E (kcal mol⁻¹ nm) = $2.86 \text{ x}10^4/700 \text{ nm} = 40.8 \text{ kcal mol}^{-1}$

E (kcal mol⁻¹ nm) = $2.86 \times 10^{4}/200 \text{ nm} = 143 \text{ kcal mol}^{-1}$

What is a matter, a material and a molecule? Early paradigms

Lucretius: ca 99-55 BC

John Dalton 1766-1844

All *matter* consists of tiny fundamental building blocks called *atoms*

"All nature consists of twain of things: of *atoms* and of the void in which they're set."

"DE RERUM NATURA"

All matter is composed of small indivisible particles termed *atoms*. Atoms of a given element possess unique characteristics and weight.

"A New System of Chemical Philosophy"

Paradigm: Matter consists of tiny particles called atoms.

What is a matter or material?

- A Matter is a collection of molecules
- A Molecule is a collection of atoms
- An Atom is a collection of nuclei and electrons
- The <u>fundamental</u> components of matter and molecules are nuclei and electrons
- To understand a matter and a molecule one needs to know the location and energies of nuclei and electrons.

Molecule: a collection of atoms (nuclei and electrons) is defined by Ψ

What is Ψ ?

Ψ defines a molecule in terms of nuclei and electrons

Ψ is made of three parts

$\Psi = \Psi_{o} \qquad \chi \qquad S$ Electronic Nuclear Spin

The three parts are interconnected. So it is hard to define a molecule precisely in terms of Ψ

Born - Oppenheimer Approximation

Born

Oppenheimer

- Electronic motion faster than nuclear motion (vibration).
- Weak magnetic-electronic interactions separate spin motion from electronic and nuclear motion.

$$\Psi = \Psi_{o} \qquad \chi \qquad S$$

Electronic Nuclear Spin
Time scale matter

Electron

- It has dual wave and particle properties, just like a photon
- Negatively charged, does not change with energy
- Electric charge oscillates with time
- It has spin of 1/2 \hbar
- It is a small magnet
- Coupled with protons and neutrons it holds atoms, molecules and everything in the world
- It is small, radius of 0.00028 nm.

Born - Oppenheimer Approximation

- Electronic motion and nuclear motion can be separated (Born-Oppenheimer approximation)
- To understand molecules, first focus on the location and energies of electrons
- Understand: Ψ_o (electronic) independent of χ and S

Where are the electrons in atoms and molecules?

Niels Bohr Nobel Prize 1922

"the structure of atoms and the radiation emanating from them"

Atomic orbitals: s, p, d, f

Viewing electrons in atoms and molecules Atoms: Electrons are present in <u>atomic orbitals (Bohr)</u> <u>Molecules:</u> Electrons are present in <u>molecular orbitals</u>

Inner orbitals Bonding orbitals Frontier orbitals

 $\Psi_0(H_2C=O) = (1s_O)^2 (1s_C)^2 (2s_O)^2 (\sigma_{CH})^2 (\sigma_{CO}')^2 (\sigma_{CO}O)^2 (\pi_{CO}O)^2 (n_O)^2 (n_O$

Light absorption and electron movement

Excited state energies

The energy required to produce an electronically excited state

 $R (E_1) + \frac{h_V}{h_V} \rightarrow R^* (E_2)$

is obtained by inspecting the absorption spectrum of the molecule.

$$\Delta E = |E_2 - E_1| = |E_2(^*R) - E_1(R)| = h\nu = hc/\lambda$$

h is Planck's constant (1.58 \times 10⁻³⁴ cal s)

 λ is the wavelength at which absorption occurs (commonly given in units of nanometers, nm),

c is the speed of light $(3 \times 10^8 \text{ cm s}^{-1})$

Excitation energy, bond energy and radiation wavelength

Time scales

Nobels in Photochemistry Development of Flash Photolysis and Femtosecond Chemistry

Norrish


```
Porter
```


Zewail

The Nobel Prize in Chemistry 1967

The Nobel Prize in Chemistry 1999

Jablonski Diagram

Alexander Jablonski (1898-1980)

Visualization of Spin Chemistry

- Quantum mechanics requires mathematics for a quantitative treatment
- Much of the mathematics of quantum mechanics can be visualized in terms of pictures that capture the qualitative aspects of the phenomena under consideration
 - Visualizations are incomplete, but it is important to note "correct" mathematical representations fail for complex systems as molecules

Electron spin and orbital angular momenta

orbitral angular momentum vector, **L**

spin angular

momentum vector, **S**

Spin

• Quantum particles possess an intrinsic angular momentum called spin which is not associated to a rotation about an axis, although we can visualize it as if it was generated by a rotation of the particle about its own axis

• Classically angular momentum is a property of a macroscopic object which is in rotation about an axis

Electronic and Spin Configuration of States

S_1 - T_1 energy gap

Why triplets are lower in energy than singlets? What controls the singlet-triplet energy gap?

 $E_{S} = E_{0}(n,\pi^{*}) + K(n,\pi^{*}) + J(n,\pi^{*})$

 $E_T = E_0(n,\pi^*) + K(n,\pi^*) - J(n,\pi^*)$

 $\Delta E_{ST} = E_{S} - E_{T} = E_{0}(n,\pi^{*}) + K(n,\pi^{*}) + J(n,\pi^{*}) - [E_{0}(n,\pi^{*}) + K(n,\pi^{*}) - J(n,\pi^{*})]$

 $\Delta E_{ST} = E_S - E_T = 2J(n,\pi^*)$

 $J(n,\pi^*) = \langle n\phi(1)\pi^*(2) | e^2/r_{12} | n\phi(2)\pi^*(1) \rangle$

 $J(n,\pi^*) \sim e^2/r_{12} < n\phi(1)\pi^*(2)|n\phi(2)\pi^*(1) \sim <\phi(1)|\phi(2) >$ overlap integral controls the gap

 $J(n,\pi^*) = \langle n(1)\pi^*(2) | e^2/r_{12} | n(2)\pi^*(1) \rangle$

$J(n,\pi^*) \sim e^2/r_{12} < n(1)\pi^*(2)|n(2)\pi^*(1) \sim < n|\pi^*>$

 $\langle \pi | \pi^* \rangle$ Large

Energies of singlet and triplet states

S_1 - T_1 energy gap: Examples

Molecule	Configuration of S_1 and T_1	$\Delta E_{\rm ST}$ (kcal mol ⁻¹)
CH2=CH2	π,π^*	\sim 70
CH2=CH-CH=CH2	π,π*	~ 60
CH2=CH-CH=CH-CH=CH2	π,π*	\sim 48
\bigcirc	π,π*	25 ^a (52) ^b
$\overline{\Omega}$	π,π*	31 ^a (38) ^b
ČŤ)	π,π^*	\sim 34
$\langle \mathfrak{S} \rangle$	π,π*	30
CH ₂ =O	n,π*	10
(CH ₃) ₂ C=O	n,π*	7
$(C_6H_5)_2C=0$	n,π*	5

a. ΔE_{ST} between states of different orbital symmetry.

b. ΔE_{ST} between states of the same orbital symmetry.

Singlet States, Triplet States, Diradicals, and Zwitterions: Key Structures Along a Photochemical Pathway from *R to P

Energy level diagram of molecules

 $\Psi_0(H_2C=O) = (1s_O)^2 (1s_C)^2 (2s_O)^2 (\sigma_{CH})^2 (\sigma_{CH}')^2 (\sigma_{CO}')^2 (\pi_{CO}')^2 (n_O)^2 (n_O$

Born-Oppenheimer Approximation

Motions of electrons in orbitals are much more <u>rapid</u> than nuclear vibrational motions

> Ψ \sim

 $\Psi_0 \chi S$

"true" molecular wavefunction (electronic)(nuclei)(spin)

A Model for Vibrational Wavefunctions The Classical Harmonic Oscillator

Independent of number of atoms we think in terms of two dimensional drawings

The Quantum Mechanical Version of the Classical Harmonic Oscillator

Harmonic and Anharmonic Oscillator

The Anharmonic Oscillator

The Anharmonic Oscillator: e.g., HCl

Representation of Polyatomic Molecules

To represent molecules with more than three atoms one needs 3N-6 space

Polyatomic molecules are represented in two or three dimensional space.

What may appear to be a minimum, barrier or saddle point in one subspace may turn out to be nothing of the kind when viewed in another cross section

Visualizing molecules in ground and excited states

Molecule represented in one dimension

Molecule represented in two dimensions

Molecule represented in three dimensions